इस्पात

भारत डिस्कवरी प्रस्तुति
यहाँ जाएँ:नेविगेशन, खोजें
इस लेख का पुनरीक्षण एवं सम्पादन होना आवश्यक है। आप इसमें सहायता कर सकते हैं। "सुझाव"

इस्पात शब्द मूलत: पुर्तग़ाली भाषा के शब्द 'स्पेडा' ‌(espada) को रूपान्तरित कर हिन्दी में लिया गया है। जिसका कारण हिन्दी अथवा संस्कृत में इसका समानार्थी शब्द का न होना है। यह लोहे को विभिन्न प्रकार से परिष्कृत रूप का नाम है और अनेक धातुओं का मिश्रण भी है। इस्पात शब्द का प्रयोग लोहे के अनेक रूपों के लिए होता है। इस्पात शब्द इतने विविध प्रकार के परस्पर अत्यधिक भिन्न गुणों वाले पदार्थो के लिए प्रयुक्त होता है कि इस शब्द की ठीक-ठाक परिभाषा करना वस्तुत: असंभव है। परंतु व्यवहारत: इस्पात से लोहे तथा कार्बन की मिश्रधातु ही समझी जाती है।

प्राप्ति

इस्पात में कार्बन की मात्रा साधारणत: 2 प्रतिशत से अधिक नहीं होती। अयस्क से अधिक से अधिक धातु प्राप्त करने के लिए अवकारक वस्तु, कार्बन, बहुतायत से मिलाई जाती है। कार्बन बाद में इच्छित मात्रा तक आक्सीकरण की क्रिया द्वारा निकाल दिया जाता है। इससे साथ के दूसरे तत्वों का भी, जिनका अवकरण हुआ रहता है और जो आक्सीकरणीय होते हैं, आक्सीकरण हो जाता है। किसी अन्य तत्व की अपेक्षा कार्बन, लोहे के गुणों को अधिक प्रभावित करता है; इससे अद्वितीय विस्तार में विभिन्न गुण प्राप्त होते हैं। वेसे तो कई अन्य साधारण तत्व भी मिलाए जाने पर लोहे तथा इस्पात के गुणों को बहुत बदल देते हैं, परंतु इनमें कार्बन ही प्रधान मिश्रधातुकारी तत्व है। यह लोहे की कठोरता तथा पुष्टता समानुपातिक मात्रा में बढ़ाता है, विशेषकर उचित उष्मा उपचार के उपरांत।

धातुकार्मिक व्यवहार में 'विशुद्ध धातु' शब्द का उपयोग ऐसे व्यापारिक मेल की धातु के लिए भी होता है जिसमें प्रधानत: वे ही गुण (जैसे, रंग विद्युतचालुकता इत्यादि) होते हैं जो शुद्ध रासायनिक धातु में होते हैं। इनमें शेष जो अशुद्धता होती है या तो उसे दूर करना कठिन होता है, अथवा धातु में कोई विशेष गुण प्राप्त करने के लिए उसे जान बूझकर मिलाया जाता है। इस प्रकार मिलाए जाने वाले तत्वों को मिश्रधातुकारी तत्व कहते हैं।

संरचना तत्त्व

साधारण इस्पात में, चाहे वह जिस विधि द्वारा बनाया गया हो, कार्बन तथा मैंगनीज़ 0.10 से 1.50 प्रतिशत, सिलिकन 0.20 से 0.25 प्रतिशत, गंधक तथा फ़ॉसफोरस 0.01 से 0.10 प्रतिशत तथा ताँबा, एलुमिनियम और आरसेनिक न्यून मात्रा में उपस्थित रहते हैं। प्राय: हाइड्रोजन, ऑक्सीजन तथा नाइट्रोजन भी अल्प मात्रा में रहते हैं। इस जाति के इस्पात कई प्रकार के काम में आते हैं। यद्यपि सभी इस्पात मिश्रधातु ही हैं, तथापि साधारण बोलचाल में इस्पात को एक सरल (अमिश्र) धातु ही माना जाता है। ऊपर दिए हुए विश्लेषण से यदि किसी तत्व की मात्रा अधिक हो, अथवा इस्पात में दूसरे तत्व, जैसे निकल, क्रोमियम, वैनेडियम, टंग्स्टन, मालिब्डीनम, टाइटेनियम आदि भी हों, जो सामान्यत: इस्पात में नहीं होते, तो विशेष या मिश्र धात्वीय इस्पात बनता है। यांत्रिक गुणों की वृद्धि के लिए ही सामान्यत: यह मिलावट की जाती है। इस्पात की कुछ विशेषताएँ, जो मिश्रधातुकारी तत्वों द्वारा प्रभावित होती हैं, इस प्रकार हैं:

यांत्रिक गुणों में वृद्धि
  1. तैयार इस्पात की पुष्टता में वृद्धि
  2. किसी निम्नतम कठोरता या पुष्टता पर चिमड़ेपन (टफ़नेस) अथवा सुघट्यता (प्लैस्टिसिटी) में वृद्धि।
  3. उस अधिकतम मोटाई में वृद्धि जिसे बुझाकर वांछित सीमा तक कड़ा किया जा सकता हो।
  4. बुझाकर कठोरीकरण की क्षमता में कमी।
  5. ठंडी रीति से कठोरीकरण की दर में वृद्धि।
  6. खरादने इत्यादि की क्रिया सुगमता से कर सकने के विचार से कड़ाई को सुरक्षित रखकर सुघट्यता में कमी।
  7. घिसाव-प्रतिरोध अथवा काटने के सामर्थ्य में वृद्धि।
  8. इच्छित कठोरता प्राप्त करते समय ऐंठने या चटकने में कमी।
  9. ऊँचे या निम्न ताप पर भौतिक गुणों में उन्नति।
चुबंकीय गुणों में वृद्धि
  1. प्रारंभिक चुंबकशीलता (पर्मिएबिलिटी) तथा अधिकतम प्रेरण (इंडक्शन) में वृद्धि।
  2. प्रसाही (कोअर्सिव) बल, मंदायन (हिस्टेरोसिस) तथा विद्युत्‌ (वाट) हानि में कमी (चुंबकीय अर्थ में कोमल लोहा)।
  3. प्रसाही बल तथा चुंबकीय स्थायित्व (रिमेनेंस) में वृद्धि।
  4. सभी प्रकार के चुबंकीय गुणों में कमी।
रासायनिक निष्क्रियता में वृद्धि
  1. आर्द्र वातावरण में मोरचा लगने में कमी।
  2. उच्च ताप पर भी रासायनिक क्रियाशीलता में कमी।
  3. रासायनिक वस्तुओं द्वारा आक्रमण में कमी।

लोहा दो प्रकार के अति उपयोगी सममापीय (आइसोमेट्रिक) रवों के रूप में रहता है:

  1. ऐल्फ़ा लोहा, जिसके ठोस घोल को 'फ़ेराइट' कहते हैं।
  2. गामा लोहा, जिसका ठोस घोल 'ऑसटेनाइट' है।

रासायनिक विशेषताएँ

  • शुद्ध लोहे का ऐल्फ़ा रूप लगभग 910° सें. से कम ताप पर रहता है; अधिक ताप पर गामा रूप रहता है। इन दोनों रूपों के लोहों में विविध मिश्रधातुकारी तत्वों को घुलनशीलता अति भिन्न है। व्यापारिक कार्बन-इस्पात, धातु-कार्मिक विचार से, लौह कारबाइड का फेराइट में एक विक्षेपण (डिस्पर्शन) है, जिसमें लौह कारबाइड का अनुपात कार्बन की मात्रा पर निर्भर रहता है।
  • कार्बन इस्पात के मोटे टुकड़ों को ऐसी विधियों तथा दरों से एक सीमा तक ठंडा किया जा सकता है कि फेराइट में सीमेंटाइट के संभव वितरणों में से कोई भी वितरण उपलब्ध हो जाए। संरचना तथा उष्मा उपचार के विचार से कार्बन इस्पात के अपेक्षाकृत ऐसे छोटे नमूने सरलता से चुने जा सकते हैं जिनमें साधारण ताप पर प्राय: महत्तम यांत्रिक गुण हों।
  • अकठोरीकृत इस्पात के दो अवयवों में दूसरा कारबाइड कला (फ़ेज़) है। कारबाइड की मात्रा, जो कार्बन के अनुपात पर निर्भर रहती है, इस्पात के गुणों को बदलती है। विक्षेपण (डिस्पर्शन) में कारबाइड के कणों के रूप तथा उसकी सूक्ष्मता से यह और भी अधिक बदलती है।
  • इस्पात को कठोर करने में तथा पानी चढ़ाते समय, मिश्रधातुकारी तत्व की उपस्थिति अंत में प्राप्त पदार्थ को एकदम बदल सकती है। फलत: संरचना और इसलिए इस्पात के गुण, जो इसी पर अत्यधिक आधारित हैं, ऑस्टेनाइट की संरचना तथा दाने के परिमाण पर निर्भर हैं।
  • बुझाए हुए इस्पात कार्बन के मात्रानुसार विभिन्न कठोरता वाले होते हैं। कठोरता के लिए केवल कार्बन पर ही निर्भर होने में इस्पात को एकाएक बुझाना पड़ता है। इससे या तो दूसरी बुराइयाँ उत्पन्न हो सकती है अथवा बहुत भीतर तक कठोरीकरण नहीं हो पाता है। कुछ उच्च मिश्रधात्वीय इस्पातों में साधारण ताप पर ही अपेक्षाकृत धीरे धीरे ठंडा कर, यह कठोरीकरण कुछ अंशों में प्राप्त किया जा सकता है।
  • बुझाए हुए तथा कठोरीकृत इस्पातों में आंतरिक तनाव होता है, जो फिर से गरम करके दूर किया जाता है। इस क्रिया को पानी चढ़ाना (टेंपरिंग) कहते हैं।
  • मिश्रधातुकारी तत्वों का प्रभाव-ऑस्टेनाइट रूपांतरण में कार्बन के अतिरिक्त अन्य मिश्रधातुकारी तत्व सामान्यत: सुस्ती पैदा करते हैं। कोबल्ट छोड़ अन्य तत्वों की उपस्थिति में बुझाने पर अधिक गहराई तक कठोरीकरण होता है। साधारणतया सभी मिश्रधात्वीय इस्पातों तथा बहुत से कारबन-इस्पातों में इच्छित गुणों का अच्छा संयोग उचित उष्माउपचार से प्राप्त होता है।
कार्बन सादे कार्बन-

इस्पात में, कार्बन की मात्रा को 0.1 प्रतिशत से 1.0 प्रतिशत तक या अधिक बढ़ाने पर तनाव पुष्टता बढ़ती है। बुझाए हुए कार्बन इस्पात में तनाव पुष्टता अत्यधिक बढ़ जाती है, जैसे 1 प्रतिशत कार्बन पर 150 टन वर्ग इंच तक। बुझाए हुए तथा पानी चढ़ाए (टेंपर किए) इस्पात की शक्ति पानी चढ़ाने के तापक्रम पर निर्भर रहती है।

ऐल्युमिनियम-

धातु के दानों के परिमाण (ग्रेन साइज़) को नियंत्रित करने के लिए थोड़ी मात्रा में ऐल्युमिनियम, 3 पाउंड प्रति टन तक, पिघले हुए इस्पात में मिलाया जाता है। सतह की अत्यधिक कठोरता वाले भागों में 1.3 प्रतिशत तक ऐल्युमिनियम रहता है।

बोरन-

बोरन इस्पात आधुनिक विकास है। कुछ निम्न मिश्रधात्वीय इस्पातों में 0.003 प्रतिशत जैसी कम मात्रा में बोरन मिलाए जाने पर कठोर हो जाने की क्षमता बढ़ती है तथा यांत्रिक गुणों की उन्नति होती है।

क्रोमियम-

अकेले अथवा दूसरे मिश्रधातुकारी तत्वों से संयोजित क्रोमियम, इस्पात का घर्षण-अवरोध तथा कठोर हो सकने की क्षमता बढ़ाता है। अधिक मात्रा में, 12 से 14 प्रतिशत तक, होने पर यह अकलुष (स्टेनलेस) इस्पात का आवश्यक तत्व है। इसी अथवा इससे भी अधिक मात्रा में (20 प्रतिशत तक) क्रोमियम रहने पर, निकल और कभी-कभी दूसरे तत्वों के साथ मिलाकर, तरह तरह के उष्मा प्रतिरोधक इस्पात तथा विभिन्न प्रकार के ऑस्टेनाइट इस्पात बनते हैं जो मार्चें तथा अम्ल की क्रिया के प्रति अत्यधिक अवरोधकता के लिए प्रसिद्ध हैं। क्रोमियम घर्षण-अवरोध की उन्नति करता है; इसलिए 2 प्रतिशत कार्बन के साथ 12 प्रतिशत तक क्रोमियम कुछ विशेष तरह के यंत्रों तथा ठप्पों के लिए इस्पात बनाने में उपयुक्त होता है। पृष्ठ कठोरीकरण (केस हार्डेनिंग) तथा नाइट्राइडिंग के लिए इस्पात में क्रोमियम प्राय: 2 प्रतिशत से कम ही होता है। सीधे कठोरीकृत छर्रो (बाल बेयरिंग) तथा कुचलने की मशीनवाले गोलों के इस्पात में क्रोमियम की मात्रा अधिक होती है।

कोबाल्ट-

कोबाल्ट से, कुछ उच्च वेग वाले यांत्रिक इस्पातों की काटने की क्षमता बढ़ती है। कुछ उष्मा प्रतिरोधक इस्पातों में, जैसे गैस टर्बिन इंजन के ढले हुए ब्लेडों में, यह प्रयुक्त होता है। अधिक मात्रा में यह ऐसे इस्पात का आवश्यक अंग होता है जो उन अति कठिन परिस्थितियों को सहन करने के लिए बनते हैं जिनमें गैस टर्बिन के ब्लेड कार्य करते हैं। इन उपयागों में कोबल्ट मिलाने से इस्पात को उष्मा अवरोधक गुण, सतह पर चिप्पड़ (स्केल) न बनने देने तथा धीरे-धीरे माप में स्वत: परिवर्तन (क्रीप) को रोकने की क्षमता मिलती है। स्थायी चुंबक की मिश्रधातुओं में भी कोबल्ट पर्याप्त मात्रा में रहता है।

ताँबा-

बिना ताँबा के इस्पात की तुलना में ताँबा की थोड़ी भी मात्रावाले इस्पात में संक्षारण-अवरोध अधिक होता है। गृहनिर्माण के लिए प्रयुक्त अथवा ऐसे ही दूसरे प्रकार के नरम इस्पातों में लगभग 0.6 प्रतिशत तक ताँबा रहता है।

मैंगनीज-

इस्पात का ठोसपन बढ़ाने के लिए तथा बची हुई गंधक से मिलकर, सल्फाइड के कारण, भुरभुरापन रोकने के लिए 0.5 से 1.0 प्रतिशत तक मैंगनीज मिलाया जाता है। 1.0 प्रतिशत से 1.8 प्रतिशत तक, मैंगनीज़ इस्पात की तनावपुष्टता तथा कठोरता में वृद्धि करता है। 13 प्रतिशत मैंगनीज-इस्पात का एक अलग ही वर्ग है। ऐसा इस्पात ठोंकने पीटने से कड़ा हो जाता है, अर्थात्‌ सुघट्य तनाव (प्लैस्टिक स्ट्रेन) पड़ने पर स्वयं कड़ा हो जाता है। किसी साधारण उष्मा उपचार द्वारा इसका कठोरीकरण नहीं होता। यह अधिकतर ढलाई के लिए प्रयुक्त होता है। झाम (ड्रेजर) के ओष्ठ,चट्टान तोड़ने वाली मशीनों के जबड़े, रेल की पटरियों की संघि (क्रासओवर) तथा अन्य विशेष मार्ग संबंधी कार्यो में, जहाँ घिसाई की विशेष आशंका रहती है, इसका उपयोग होता है।

मोलिब्डेनम-

इस्पात में मोलिब्डेनम शक्ति, कठोर हो सकने की क्षमता तथा धीरे-धीरे स्वत: परिवर्तन के प्रति अवरोध बढ़ाता है। उच्च तापक्रम पर कार्य करने के लिए इस्पात की कठोरता सुरक्षित रखने में भी मालिब्डीनम सहायक है। इसलिए कुछ उच्च वेग इस्पातों में टंग्स्टन के एक अंश के बदले इसी का उपयोग होता है। उदाहरण के लिए 5.5 प्रतिशत मोलिब्डेनम और 6 प्रतिशत टंग्स्टन का एक उच्चवेग इस्पात है, जो प्रामाणिक 18 प्रतिशत टंग्स्टन की तुलना में उपयोगी और सस्ता होता है।

निकल-

इस्पात में मिलाने के लिए (मैंगनीज़ को छोड़) सबसे अधिक उपयोग इसी का होता है। पिघले हुए लोहे में यह सभी अनुपातों में घुल जाता है तथा ठंडा होने पर ठोस घोल बनाता है। 5 प्रतिशत तक रहने पर यह इस्पात का चिमड़ापन तथा तनाव पुष्टता बढ़ाता है। यह कठोर हो सकने की क्षमता को भी बढ़ाता है, जिससे पानी में बुझाने की जगह तेल में बुझाकर कठोरीकरण संभव है। फटने तथा ऐंठने की प्रवृत्ति को भी कम करता है, जिससे बड़ी नाप के ऐसे इस्पात को भी अच्छी तरह कठोर किया जा सकता है।

कुछ पृष्ठ-कठोरीकरण इस्पातों में 1.0 से 5.0 प्रतिशत तक निकल रहता है। नाइट्राइडिंग इस्पातों में साधारणत
निकल की मात्रा अधिक से अधिक 0.4 प्रतिशत तक ही सीमित है।[1]
बहुत से संक्षारण-

अवरोधक तथा 'स्टेनलेस' ऑस्टेनाइटमय इस्पातों में निकल का अंश 8 प्रतिशत तथा इससे अधिक होता है। प्रसिद्ध 18 : 8 क्रोमियम-निकल-इस्पात तथा उससे मिलते जुलते इस्पात भी इसी वर्ग में सम्मिलित हैं। कुछ अति नवीन प्रकार के इस्पातों में निकल की मात्रा अधिक होती हैं, जैसे 20 प्रतिशत या इससे भी अधिक। ये उच्च ताप तथा अत्यधिक दबाव की स्थितियों में कार्य करने के लिए उपयुक्त होते हैं; उदाहरणत:, गैस टर्बिन के स्थिर तवे (डिस्क) तथा ब्लेड। 36 प्रतिशत निकल का, इस्पात, जो 'इनवार' नाम से प्रसिद्ध है, अपने अति निम्न-प्रसार-गुणांक के कारण यथार्थदर्शी घड़ियों, स्वरित्र (टयूनिंग फ़ोर्क) तथा बहुत से वैज्ञानिक उपकरण बनाने में उपयुक्त होता है।

कोलंबियम-

क्रोमियम इस्पात या 18 : 8 क्रोमियम-निकल प्रकार के इस्पात को स्थिर करने के लिए 1 प्रतिशत अथवा ऐसी ही मात्रा तक कोलंबियम का उपयोग होता है। यह टाइटेनियम के सदृश ही कार्य करता है।

सिलिकन-

मैंगनीज़ की भाँति सिलिकन सभी इस्पातों में प्रारंभ से ही, अथवा इस्पात बनाते समय मिलावट के कारण, रहता है। इसकी उपस्थिति से इस्पात का अनाक्सीकरण होना प्राय: निश्चित सा हो जाता है। सिलिकन में, अधिक मात्रा में रहने पर, इस्पात की शक्ति तथा कठोर हो सकने की क्षमता बढ़ाने की तथा आंतरिक तन्यता कम करने की प्रवृत्ति होती है। सिलिकन मैंगनीज़ के कमानी वाले इस्पात में इसकी मात्रा 1.5 प्रतिशत से 2 प्रतिशत तक रहती है, जिसमें मैंगनीज़ की मात्रा लगभग 0.6-1.0 प्रतिशत होती है। सिलिकन-क्रोमियम से बने इंजनों के वाल्वों के इस्पात में सिलिकन की मात्रा 3.75 प्रतिशत होती है।

निकल-

क्रोमियम-टंग्स्टन वाल्वों के इस्पात में इसकी मात्रा 1.0-2.5 प्रतिशत होती है।

गंधक-

जैसा विदित है, इस्पात में गंधक का होना साधारणतया उपद्रवप्रद है। मिश्रधातुकारी तत्व के रूप में इसका उपयोग केवल स्वच्छंदता से कटने वाले इस्पात में होता है।

सिलिनियम-

यह तत्व गंधक के सदृश ही कार्य करता है।

टाइटेनियम-

थोड़ी मात्रा में मिलाने से यह इस्पात की स्थिरता बढ़ाता है, और कहते हैं, इसके कारण दाने (ग्रेन) का परिमाण अधिक सूक्ष्म होता है।

टंग्स्टन-

20 प्रतिशत तक की मात्रा में टंग्स्टन उच्चवेग इस्पात का आवश्यक अवयव है; इसलिए कि यह इस्पात को उष्मा उपचार के बाद अत्यधिक कठोरता प्रदान करता है, जो ऊँचे ताप पर भी स्थिर रह जाती है। गर्म-ठप्पा-इस्पात तथा दूसरे गर्म कार्य के लिए उपयुक्त इस्पात में भी इसका उपयोग होता है। इसमें इसकी मात्रा 2 प्रतिशत से लगभग 10 प्रतिशत तक होती है।

वैनेडियम-

इस्पात में वैनेडियम, फ़ेरो-वैनेडियम के रूप में मिलाया जाता है। यह शक्तिशाली स्चच्छकारक वस्तु है। इससे इस्पात की स्थिरता तथा सफाई बढ़ती है तथा उष्मा उपचारित कार्बनमय और मिश्रधात्वीय इस्पात के यांत्रिक गुण उन्नत होते हैं। हवा में कठोरीकरण के गुण तथा काटने की क्षमता बढ़ाने के लिए 1½ प्रतिशत तक वैनेडियम उच्चवेग यांत्रिक इस्पात में प्रयुक्त होता है। एक प्रकार के प्रसिद्ध उच्चवेग इस्पात में वैनेडियम 4.5 जैसे ऊँचे अनुपात में रहता है।

ज़िरकोनियम-

कुछ उच्च क्रोमियम-निकल तथा ऑस्टेनाइटमय 18 : 8 प्रकार के इस्पात में, मुक्त कटने के गुण देने के लिए, थोड़ी मात्रा में यह तत्व गंधक के साथ प्रयुक्त होता है। निम्न-मिश्र-धात्वीय, उच्च-तनाव-पुष्ट, भवन-निर्माण-इस्पात-प्रामाणिक ब्योरे के अनुसार इन इस्पातों की अंतिम तनाव-पुष्टता 37-43 टन प्रति वर्ग इंच है, तथा त्रोटनविंदु (वह सीमा जिसपर छड़ टूटता है)

  1. सिलिकन इस्पात
  2. मैंगनीज़ इस्पात
  3. ताँबे की थोड़ी मात्रा के साथ मैंगनीज़ इस्पात।
  4. मैंगनीज़, क्रोमियम तथा ताँबे की मिलावट का इस्पात।



टीका टिप्पणी और संदर्भ

  1. नाइट्राइडिंग इस्पात के बाहरी पृष्ठ को कड़ा करने की एक रीति है। साधारणत:अमोनिया गैस में इस्पात को 500-555° सेंटीग्रेड तक तप्त करने से यह कार्य सिद्ध होता है।

बाहरी कड़ियाँ

संबंधित लेख